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Abstract. We analyse the effect of tip stability on the multifractality of interfacial patterns 
by applying the method of noise reduction to a random Laplacian growth on the square 
lattice. While the distribution of perimeter sites over the harmonic measure is smooth in 
the case of random fractal objects with tip splitting, separate peaks appear if the tips are 
stable. These peaks can be identified with the subset of growth sites corresponding to the 
tips. We demonstrate the consequences of such behaviour in the multifractal spectrum. 

Interfacial patterns developed by Laplacian processes (Langer 1980, Bensimon er al 
1986) are known to exhibit different behaviour depending on the amount of anisotropy 
present during the growth (Kessler er al 1986). The tips of the fingers or elongated 
parts which emerge due to the instability of the interface are split if anisotropy is too 
small. In the presence of sufficient randomness the sequence of instabilities caused 
by tip splitting and screening leads to a random fractal object. On the other hand, a 
large enough anisotropy stabilises the tips and the resulting pattern is regular (Kertbz 
1987, Vicsek 1987). 

Random Laplacian models like diffusion-limited aggregation ( DLA) (Witten and 
Sander 1981, 1983) or dielectric breakdown model (DBM) (Niemeyer et a1 1984) have 
been widely studied examples of fractal growth. If an underlying lattice structure is 
present, the pattern is a result of the interplay between the anisotropy and fluctuations. 
The fluctuations tend to suppress anisotropy and therefore, at least for small sizes, the 
tip splitting character of the growth is dominant. However, as the size of the system 
increases, the weight of the fluctuations decreases and the tip stabilising effect of the 
anisotropy can develop. In fact, DLA clusters on the square lattice have been shown 
to cross over from the random fractals to patterns having the more regular overall 
shape of dendrites with stable tips in the directions of the lattice axes (Meakin 1986). 
During this crossover the value of the fractal dimensionality (or exponent of radius 
of gyration) changes from -1.7 to -1.5. 

In order to control the amount of fluctuations in random Laplacian growth the 
method of noise reduction was introduced independently by Tang (1985) and Sztp et 
a1 (1985). The algorithm for DLA is as follows: instead of adding a particle to the 
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aggregate if the random walker coming from 'infinity' hits a perimeter, one occupies 
a growth site only if it is hit by m independent random walkers where m is the noise 
reduction parameter. As was first pointed out by Kertksz and Vicsek (1986), the effect 
of noise reduction on square lattice DLA clusters is that the asymptotic shape of the 
pattern is reached much earlier than in pure DLA: while millions of particles are needed 
to see the dendritic structure if m = 1, it is well developed already for very small sizes 
( a  hundred particles) even at small values of m ( m  =4) .  Thus noise reduction is a 
simple tool to tune the anisotropy in growth of clusters of a given size. 

The difference between a random fractal cluster and a regular dendritic pattern is 
visually apparent and we are now interested in the consequences of this difference on 
the quantities characterising such objects. The multifractal analysis of random fractals 
has led to important new insight into their geometry and  DLA (or DBM)  clusters are 
known to obey multifractal behaviour with respect to the growth probability distribution 
as a measure (see Coniglio (1986) and  Stanley and Meakin (1987) for reviews). 
Amitrano et a1 (1986) showed that by changing the parameter 17 in the DBM model 
not only the fractal dimensionality changes but there is also a drastic change in the 
distribution of the number of growth sites. Here we undertake a somewhat similar 
project related to the differences due to the change of the parameter m: the aim of 
the present letter is to investigate the effect of tip stability on the quantities characterising 
multifractality. 

Let us first summarise briefly the formalism describing the multifractal behaviour 
of the clusters (Halsey er a1 1986a, b). Associate a measure p ,  at site i. Usually p ,  is 
the growth probability, the probability that site i becomes part of the cluster at the 
next step. We consider the following moments: 

where L is the linear extent of the cluster and  T( q )  are the critical exponents. Equation 
(1) can be rewritten by defining the density distribution n( ln(p) )  with p being the 
continuous parameter describing the growth probabilities: 

Z(q)  = n(x )  eqx dx. 

The integral in ( 2 )  can usually be evaluated by the steepest-descent method, i.e. the 
integral can be substituted by the maximum of the integrand. In this way, for each q 
we have x*  = In p *  defined by 

d 
d x  
-In n ( x )  = q. (3) 

We can now write the following scaling ansatz: 

and from (2)  
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Thus the fundamental quantity to calculate is n ( x )  as a function of L from which T ( q )  

and finally f ( a )  can be obtained. 
In a numerical determination of n ( x )  one has to simulate many samples of the 

fractal object and take their averages. In order to see the effect of tip stabilisation on 
n ( x )  and f ( a )  we implemented the following algorithm. We consider the DBM and 
calculate the probabilities p I  by using the Green function method on the square lattice 
(Morita 1971). Having found the probabilities we make several trials and count how 
many times a given growth site is chosen. If this number reaches the noise reduction 
parameter m we occupy the site. For the new configuration we again calculate the 
probabilities but let the counters remain unchanged. Note that in this case p ,  is the 
probability for a given growth site to be chosen and is associated to the harmonic 
measure; it is not the growth probability, i.e. the probability that a site becomes part 
of the aggregate at the next step: only for m = 1 do the two coincide. In the following 
we will consider the moments of p , ,  namely we will associate the harmonic measure 
to each site. Therefore the multifractal analysis will be made in terms of the harmonic 
measure. The application of noise reduction to DBM (Nittmann and Stanley 1986) is 
known to lead to results different from the DLA due  to the differences in the boundary 
conditions (Ball 1986). However, our Green functional approach leads to configur- 
ations qualitatively similar to the DLA case. 

The Green function method has the advantages that no outer boundary condition 
is needed at finite distance from the aggregate and  the small p ,  can also be calculated 
with arbitrary accuracy. The disadvantage of this method is that one cannot go to 
large sizes: the maximum number of particles we could deal with was of the order of 
100. However, since noise reduction is already effective at such sizes, one can expect 
relevant results. 

Our main findings are summarised in figure 1 .  n ( x )  is usually a quasi-continuous 
smooth function because it is an  averaged quantity (Amitrano et a1 1986). However, 
in the case of stable tips a different behaviour is observed. At the tips, which are the 
‘hottest’ parts of the aggregates, there are no more fluctuations and therefore n ( x )  has 
a sharp separate peak corresponding to the highest growth probabilities. In fact, we 
can see that the peak occurs parallel with the stabilisation of the tip and  the sharpness 
of the peak characterises its stability. In other words, the peak at the highest prob- 
abilities can be identified with a well defined subset of the cluster: a situation similar 
to spectroscopy where sharp peaks correspond to eigenstates (stable tips) and  the 
width to the inverse lifetime (stability). According to this picture further peaks should 
separate off from the ‘continuum’ if the shape of the tip is more fixed and  this is 
observed if m is increasing for a given number of particles (figure l ( c ) ,  ( d ) ) .  

Let us now consider how the multifractal formalism (1)-(7)  has to be changed in 
the presence of a sharp peak in n ( x )  (the generalisation to more than one peak is 
straightforward). For this purpose we suppose that n ( x )  consists of two parts: 

n ( x )  = n ( x , ) S ( x - x X , ) + n , ( x )  (8) 
where x, = In p f  denotes the maximum value of x where the peak is located and  n, is 
the smooth part of n. If we now evaluate the integral (2) we get 

(9) 
where (2),  (4) and (5) were used and  we assumed that relations similar to (4) and (5) 
are valid for the set characterised by the peak. Since one is interested in the large L 
limit, the contribution to Z ( q )  in (9) comes from the term which has a larger exponent. 

z (q)  = p - w , +  L15(q)-q- , tq)  
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One possibility is that T , ( q )  takes over at a critical value of q which is the solution of 
the equation T,(q,) = T,(q,) .  The result is a kink in the full exponent T ( q ) ,  i.e. a separate 
point (a, , f i )  occurs on the f ( a )  plot. However, another possibility is, of course, that 
there is no discontinuity in f ( a )  and the point ( a , , J )  fits well onto the f ( a )  curve. 

The identification of the peak in n ( x )  with a subset enables us to calculate the 
corresponding exponents immediately from the L dependence of the position x, of 
the peak (for a,) and of the area (forfi) .  This extrapolation is shown in figure 2 for 
m = 20. Our observations can be summarised as follows. a, and f i  agree within the 
error bars with the minimum value of a and f obtained from the f ( a )  curve (figure 
3). We observe that, whenever the first peak is well defined, the corresponding fractal 
dimensionalityf, is very close to zero; in addition, the number of growth sites belonging 
to the singularity characterised by this peak is about four. This can be understood, 
since the contributions to the first peak come from the subset of growth sites with 
highest measure, i.e. from the four stable tips of the main stems. The analysis of the 
second peak leads to similar results: the f and a exponents are close to the values 
obtained for the first peak. Taking into account that the variation of f  is rapid in the 
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Figure 2. Extrapolation of and a ,  from the position and area of the first peak in n ( x )  
for m =20.  The plots show ( a )  Inp,/ln R and ( b )  In(area)/ln R as a function of l / l n  R. 
The intercepts, calculated through the best fit of the data, are marked with arrows on the 
graphs. 
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Figure 3. /(a) for m = 20. The contribution from the separate peak in n ( x )  (see figure 
I ( c ) )  practically coincides with the first point of the curve (check with the values for a 
and f taken from figure 2 ( a )  and ( b ) ) .  

neighbourhood of the minimum value of a we think that in our case the whole f ( a )  
curve turns out to be continuous. A sharp kink in r ( q )  can probably be excluded. 

In summary we have demonstrated that the multifractal analysis of the problem of 
tip stability in Laplacian growth is very useful; in particular the peaked structure of 
n ( x )  enables us to identify the subsets of the clusters which are characteristic for the 
stable tips. Since the stability means less fluctuations, the sites on the stable tips 
contribute to well defined probabilities and are thus similar to eigenstates in spectro- 
scopic problems. We think that behaviour similar to the one described above may 
occur in other related problems and especially in non-linear dynamics. 

We would like to thank D Stauffer, T Vicsek and D Wolf for interesting discussions. 
One of us (LdA) was supported by SFB 125. JK is grateful for the kind hospitality 
extended to him at the Dipartimento di Fisica, Universiti di Napoli. 
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